-moz-transform property | -webkit-transform property
-moz-transform: | ||||||
-webkit-transform: |
In Internet Explorer, the matrix filter provides similar functionality.
Note that these transformation functions are similar to the transformations supported by SVG and VML.
In the followings, the origin is always the one specified by the -moz-transform-origin property.JavaScript page for this property: MozTransform | webkitTransform. You can find other example(s) there. |
Possible values:
One of the following values: | ||||||||||||||||||||||||||||
|
Description of values:
Performs a linear transformation on the element specified by the given matrix. The transX and transY values must be given in length units in Firefox and without the use of length units in Google Chrome and Safari (they always calculate these values in pixels). For the supported length units, see the length page. | |||||||
No transformation needs to be performed. | |||||||
Rotates the element clockwise around the origin by the given angle. The angle must be followed by a unit designator (deg, grad or rad). | |||||||
Scales the element from the origin by factors of x and y. If y is not specified, then scales in both directions by a factor of x. | |||||||
Scales the element from the origin along the horizontal axis by a factor of x. | |||||||
Scales the element from the origin along the vertical axis by a factor of y. | |||||||
Performs an anticlockwise skew horizontally and a clockwise skew vertically on the element by the given angles. Each angle must be followed by a unit designator (deg, grad or rad). The default value of angleY is zero (no vertical skew). | |||||||
Performs an anticlockwise skew on the element horizontally by angleX. The angle must be followed by a unit designator (deg, grad or rad). | |||||||
Performs a clockwise skew on the element vertically by angleY. The angle must be followed by a unit designator (deg, grad or rad). | |||||||
Translates the element horizontally by x and vertically by y. The values of x and y must be specified in length units. For the supported length units, see the length page. The default value of y is zero (no vertical translation). | |||||||
Translates the element horizontally by x. The value of x must be specified in length units. For the supported length units, see the length page. | |||||||
Translates the element vertically by y. The value of y must be specified in length units. For the supported length units, see the length page. |
Transform Functions:
Matrix
matrix(a, b, c, d, transX, transY)
Performs a linear transformation on the element specified by the given matrix. Each point of the element is represented by an (x, y, 1) vector, where x and y are the coordinates of the point in the local coordinate system specified by the -moz-transform-origin property. The result of the matrix method is the following matrix multiplication:This means that every point (x, y) moves to the point (a * x + c * y + transX, b * x + d * y + transY).
For example:-
matrix(1, 0, 0, 1, 0px, 0px) is an identity transformation (every point stays fixed):
(x, y) --> (1 * x + 0 * y + 0, 0 * x + 1 * y + 0) = (x, y)
-
matrix(2, 0, 0, 1, 0px, 0px) is an origin-based horizontal scaling by two:
(x, y) --> (2 * x + 0 * y + 0, 0 * x + 1 * y + 0) = (2 * x, y)
-
matrix(1, 0, 0, 2, 0px, 0px) is an origin-based vertical scaling by two:
(x, y) --> (1 * x + 0 * y + 0, 0 * x + 2 * y + 0) = (x, 2 * y)
-
matrix(3, 0, 0, 3, 0px, 0px) is an origin-based magnification by three:
(x, y) --> (3 * x + 0 * y + 0, 0 * x + 3 * y + 0) = (3 * x, 3 * y)
-
matrix(-1, 0, 0, 1, 0px, 0px) is a horizontal reflection against the y-axis:
(x, y) --> (-1 * x + 0 * y + 0, 0 * x + 1 * y + 0) = (-x, y)
-
matrix(1, 0, 0, -1, 0px, 0px) is a vertical reflection against the x-axis:
(x, y) --> (1 * x + 0 * y + 0, 0 * x + -1 * y + 0) = (x, -y)
-
matrix(-1, 0, 0, -1, 0px, 0px) is a reflection across the origin:
(x, y) --> (-1 * x + 0 * y + 0, 0 * x + -1 * y + 0) = (-x, -y)
-
matrix(-2, 0, 0, 1, 0px, 0px) is a reflection across the origin a horizontal scaling by two:
(x, y) --> (-2 * x + 0 * y + 0, 0 * x + 1 * y + 0) = (-2 * x, y)
-
matrix(1, 0, 1, 1, 0px, 0px) is an anticlockwise horizontal skew by 45 degrees.
(x, y) --> (1 * x + 1 * y + 0, 0 * x + 1 * y + 0) = (x + y, y)Moves every point of the element horizontally by its y-coordinate.
-
matrix(1, 0, -1, 1, 0px, 0px) is a clockwise horizontal skew by 45 degrees.
(x, y) --> (1 * x - 1 * y + 0, 0 * x + 1 * y + 0) = (x - y, y)Moves every point of the element horizontally by the negative of its y-coordinate.
-
matrix(1, 1, 0, 1, 0px, 0px) is a clockwise vertical skew by 45 degrees.
(x, y) --> (1 * x + 0 * y + 0, 1 * x + 1 * y + 0) = (x, y + x)Moves every point of the element vertically by its x-coordinate.
-
matrix(1, -1, 0, 1, 0px, 0px) is an anticlockwise vertical skew by 45 degrees.
(x, y) --> (1 * x + 0 * y + 0, -1 * x + 1 * y + 0) = (x, y - x)Moves every point of the element vertically by the negative of its x-coordinate.
-
matrix(1, 0, 0, 1, 5px, 0px) is a horizontal translation by 5px:
(x, y) --> (1 * x + 0 * y + 5px, 0 * x + 2 * y + 0) = (x + 5px, y)
-
matrix(1, 0, 0, 1, 0px, -10px) is a vertical translation by -10px:
(x, y) --> (1 * x + 0 * y + 5px, 0 * x + 2 * y + 0) = (x, y - 10px)
The main advantage of the matrix function is that every two dimensional linear transformation can be described with just one matrix function.
It is based on matrix multiplication (and its multiplicative property):This means that:
- matrix(-1, 0, 0, 1, 0px, 0px) matrix(1, 0, 0, 1, 5px, 0px)
- or matrix(-1, 0, 0, 1, -5px, 0px)
- matrix(1, 0, 0, 1, 5px, 0px) matrix(-1, 0, 0, 1, 0px, 0px)
- or matrix(-1, 0, 0, 1, 5px, 0px)
If you have more than two transformations, then multiply the first two matrices from right to left and replace them with the result matrix. With this step you have reduced the number of transformations by one. Repeat this step until only one matrix remains, which will be the result matrix.
Rotate
rotate(angle)
Rotates the element clockwise around the origin by the given angle. The angle must be followed by a unit designator (deg, grad or rad).Equivalent to the matrix(cos(angle), sin(angle), -sin(angle), cos(angle), 0, 0) transformation.
Please see Example 2 for further details.Scale
-
scale(x[, y])
Scales the element from the origin by factors of x and y. If y is not specified, then scales both horizontally and vertically by a factor of x.Equivalent to the matrix(x, 0, 0, y, 0, 0) transformation.
-
scaleX(x)
Scales the element from the origin along the horizontal axis by a factor of x.Equivalent to the matrix(x, 0, 0, 1, 0, 0) transformation.
-
scaleY(y)
Scales the element from the origin along the vertical axis by a factor of y.Equivalent to the matrix(1, 0, 0, y, 0, 0) transformation.
Skew
-
skew(angleX[, angleY])
Performs an anticlockwise skew horizontally and a clockwise skew vertically on the element by the given angles. Each angle must be followed by a unit designator (deg, grad or rad). The default value of angleY is zero (no vertical skew).Equivalent to the matrix(1, tan(angleY), tan(angleX), 1, 0, 0) transformation.
-
skewX(angleX)
Performs an anticlockwise skew on the element horizontally by angleX. The angle must be followed by a unit designator (deg, grad or rad).Equivalent to the matrix(1, 0, tan(angleX), 1, 0, 0) transformation.
-
skewY(angleY)
Performs a clockwise skew on the element vertically by angleY. The angle must be followed by a unit designator (deg, grad or rad).Equivalent to the matrix(1, tan(angleY), 0, 1, 0, 0) transformation.
Translate
-
translate(x[, y]
Translates the element horizontally by x and vertically by y. The values of x and y must be specified in length units. For the supported length units, see the length page. The default value of y is zero (no vertical translation).Equivalent to the matrix(1, 0, 0, 1, x, y) transformation.
-
translateX(x)
Translates the element horizontally by x. The value of x must be specified in length units. For the supported length units, see the length page.Equivalent to the matrix(1, 0, 0, 1, x, 0) transformation.
-
translateY(y)
Translates the element vertically by y. The value of y must be specified in length units. For the supported length units, see the length page.Equivalent to the matrix(1, 0, 0, 1, 0, y) transformation.
Example HTML code 1:
|
||||
<head> <style> .notrans { width: 300px; border:4px solid #ff0000; } .trans { width: 300px; border:4px solid #ff0000; -moz-transform: translate(100px, 0px); -webkit-transform: translate(100px, 0px); } </style> </head> <body> <div class="notrans">An element without translation</div> <br /><br /> <div class="trans">An element translated horizontally by 100px</div> </body> |
||||
|
||||
Did you find this example helpful?
|
Example HTML code 2:
|
||||
<head> <style> .rotated { width: 300px; border:4px solid #ff0000; -moz-transform-origin: 0px 0px; /* move the origin to top-left */ -webkit-transform-origin: 0px 0px; /* move the origin to top-left */ -moz-transform: rotate(45deg); -webkit-transform: rotate(45deg); } </style> </head> <body> <div class="rotated">An element rotated by 45 degrees</div> </body> |
||||
|
||||
Did you find this example helpful?
|
Example HTML code 3:
|
||||
<head> <style> .noscaled { width: 300px; height: 30px; border:4px solid #ff0000; } .scaled { width: 300px; height: 30px; border:4px solid #ff0000; -moz-transform-origin: 0px 0px; /* move the origin to top-left */ -webkit-transform-origin: 0px 0px; /* move the origin to top-left */ -moz-transform: scale(2, 3); -webkit-transform: scale(2, 3); } </style> </head> <body> <div class="noscaled">A 300x30 element without scaling</div> <br /><br /> <div class="scaled">A 300*30 scaled element</div> </body> |
||||
|
||||
Did you find this example helpful?
|
Example HTML code 4:
|
||||
<head> <style> .base { width: 300px; height: 80px; border:4px solid #ff0000; -moz-transform-origin: 0px 0px; /* move the origin to top-left */ -webkit-transform-origin: 0px 0px; /* move the origin to top-left */ } .skewH { -moz-transform: skewX(20deg); -webkit-transform: skewX(20deg); } .skewV { -moz-transform: skewY(20deg); -webkit-transform: skewY(20deg); } .skewHV { -moz-transform: skew(20deg, 20deg); -webkit-transform: skew(20deg, 20deg); } </style> </head> <body> <div class="base skewH">Horizontal skew</div> <br /><br /> <div class="base skewHV">Horizontal and vertical skew</div> <br /><br /> <div class="base skewV">Vertical skew</div> </body> |
||||
|
||||
Did you find this example helpful?
|
Example HTML code 5:
|
||||
<head> <style> .base { width: 300px; height: 80px; border:4px solid #ff0000; -moz-transform-origin: 0px 0px; /* move the origin to top-left */ -webkit-transform-origin: 0px 0px; /* move the origin to top-left */ } .rotate_translate { -moz-transform: rotate(30deg) translateX(200px); -webkit-transform: rotate(30deg) translateX(200px); } .rotateMatrix_translateMatrix { -moz-transform: matrix(0.866, 0.5, -0.5, 0.866, 0px, 0px) matrix(1, 0, 0, 1, 200px, 0px); -webkit-transform: matrix(0.866, 0.5, -0.5, 0.866, 0, 0) matrix(1, 0, 0, 1, 200, 0); } .rotate_translateMatrix { -moz-transform: matrix(0.866, 0.5, -0.5, 0.866, 160px, 100px); -webkit-transform: matrix(0.866, 0.5, -0.5, 0.866, 160, 100); } </style> </head> <body> <div class="base rotate_translate">Skew and rotate</div> <br /><br /> <div class="base rotateMatrix_translateMatrix">Skew matrix and rotation matrix</div> <br /><br /> <div class="base rotate_translateMatrix">Skew and rotation matrix</div> </body> |
||||
|
||||
Did you find this example helpful?
|
Example HTML code 6:
|
||||
<head> <style> .rotate_scale { width: 300px; height: 300px; background-color:red; filter:progid:DXImageTransform.Microsoft.Matrix(M11=0.433, M12=-0.25, M21=0.25, M22=0.433, Dx=100, Dy=50); -moz-transform: matrix(0.433, 0.25, -0.25, 0.433, 0px, 0px); -webkit-transform: matrix(0.433, 0.25, -0.25, 0.433, 0, 0); } </style> </head> <body> <div class="rotate_scale"></div> </body> |
||||
|
||||
Did you find this example helpful?
|